345

LINEAR INTEGRATED CIRCUITS

TYPE TL489C 5-STEP ANALOG LEVEL DETECTOR

P DUAL-IN-LINE PACKAGE (TOP VIEW)

BULLETIN NO. DL-S 12584, JANUARY 1978 - REVISED OCTOBER 1979

- 5 Comparators to Digitize Analog Input Signals in 200 mV Increments
- High Input Impedance . . . 100 kΩ Typ
- Open-Collector Outputs Capable of Sinking up to 40 mA and Withstanding up to 18 V
- Supply Voltage Range of 10 to 18 V
- Economical 8-Pin Dual-in-Line Plastic Package

FUNCTION TABLE

INPUT A	OUTPUTS					
(NOM)	Q1	Q2	QЗ	Q4	Q 5	
0-≈200 mV	Н	Н	Н	Н	Н	
≈200-≈400 mV	L	Н	Н	Н	Н	
≈400-≈600 mV	L	Ļ	н	Н	н	
≈600≈800 mV	L	L	L	н	Н	
≈800≈ 1000 mV	L	L	L	L	н	
>≈1000 mV	L	L	L	L	L	

H = high level, L = low level

ANALOG DIGITAL OUTPUTS ANALOG OS O4 7 6 5 VOLTAGE REGULATOR DIGITAL OUTPUTS DIGITAL OUTPUTS

description

The TL489C consists of five comparators and a reference voltage network to detect the level of an analog input signal at the A input. Output Q1 is switched to a low logic level at a typical input voltage of 200 millivolts. After each 200-millivolt step, the next output is switched to low logic levels. All outputs are at low logic levels at a typical input voltage of 1000 millivolts. The open-collector outputs are capable of sinking currents up to 40 milliamperes and may be operated at voltages up to 18 volts. The analog input has a high impedance of typically 100 kilohms.

Since all five trigger points have a switching hysteresis of typically 10 millivolts, the circuit may be operated with slow input signals without the danger of oscillation at the outputs. To prevent pickup of noise, a capacitor should be connected between the high-impedance input and ground, especially when the input is driven from a high-impedance source.

The TL489C is especially designed to detect and indicate analog signal levels. The device may be used in various industrial, consumer, or automotive applications such as low-precision meters, warning signal indicators, A/D converters, feedback regulators, pulse shapers, delay elements, and automatic range switching. The power outputs are suitable for driving a variety of display elements such as LED's or filament lamps. The outputs may also drive digital integrated logic such as TTL, CMOS, or other high-level logic.

The TL489C is characterized for operation from 0°C to 70°C.

absolute maximum ratings

Supply voltage, VCC (see Note 1)	,
Voltage at analog input A	,
Off-state output voltage	,
Current through analog input A	′
Low-level output current (each output)	4
Low-level output current (each output)	4
Total low-level output current	٩
Continuous total dissipation at (or below) 25°C free-air temperature (see Note 2)	٧
Operating free-air temperature range	2
Lead temperature 1/16 inch (1,6 mm) from case for 10 seconds	`

NOTES: 1. Voltage values are with respect to network ground terminal.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, VCC	10	12	18	V
Output voltage, Vo			18	V
Low-level output current			40	mΑ
Operating free-air temperature, TA	0		70	°C

electrical characteristics over recommended range of VCC and operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
V _{T+} Positive-going threshold voltage at input A	-	Switching Q1	T _A = 25°C	160	200	240	m∨
		Switching Q2		350	400	450	
		Switching Q3		540	600	660	
		Switching Q4		730	800	870	
	Switching Q5	1	920	1000	1080	1	
$V_{T+} - V_{T-}$	Input hysteresis				10		m۷
¹ ОН	High-level output current		V _{OH} = 18 V		0.5	20	μА
VOL Low-level output voltage		I _{OL} = 16 mA		0.15		<u> </u>	
			I _{OL} = 40 mA	<u> </u>	0.25	0.5	V
11	Input current		V _I = 1 V		0,5		μΑ
lcc	Supply current	All outputs high	V _{CC} = 12 V		8	12	
		All outputs low	All outputs open		15	25	mA

 $^{^{\}dagger}$ All typical values are at ^{V}CC = 12 V, ^{T}A = 25 $^{\circ}$ C.

^{2.} Derate linearly to 640 mW at 70°C free-air temperature at the rate of 8,0 mW/°C.

TYPE TL489C 5-STEP ANALOG LEVEL DETECTOR

TYPICAL APPLICATIONS DATA

[†]Keep-alive resistors to avoid high switching current.

FIGURE 1-INTERFACING WITH INCANDESCENT LAMPS

Lamps L1 through L5 illuminate as the input voltage increases in nominally 200-mV steps. Additionally, lamp L1 will flash periodically when the input voltage at point P is below 200 mV.

Lamp L1 is turned on at input voltages (pin 8) \geq 200 mV and the alarm turns off, Lamp L2 is turned on at input voltages \geq 600 mV to indicate correct operation.

Lamp L3 is turned on at input voltages \geqslant 1000 mV and the over-range alarm turns on.

FIGURE 3-THREE-STAGE LEVEL INDICATION AND CONTROL

178

TYPICAL APPLICATION DATA OUTPUT 01 OUTPUT 02 OUTPUT 03 OUTPUT 04 OUTPUT 05

FIGURE 4-WAVEFORMS FOR FIVE DELAYED OUTPUTS

FIGURE 5-PULSE-SHAPE CONVERTER

Switch S1 selects the temperature at which the fan starts operating, and S2 selects the temperature at which the fan stops operating.

FIGURE 6-TEMPERATURE FEEDBACK REGULATION WITH SELECTABLE SYSTEM HYSTERESIS